Quasi-isometric rigidity of non-cocompact S-arithmetic lattices

نویسنده

  • Kevin Wortman
چکیده

Throughout we let K be an algebraic number field, VK the set of all inequivalent valuations on K, and V ∞ K ⊆ VK the subset of archimedean valuations. We will use S to denote a finite subset of VK that contains V ∞ K , and we write the corresponding ring of S-integers in K as OS. In this paper, G will always be a connected non-commutative absolutely simple algebraic K-group. Any group of the form G(OS) is called an Sarithmetic group. For example, if m ∈ N, then PGLn(Z[1/m]) is an Sarithmetic group. The purpose of this paper is to complete the quasi-isometric classification of non-cocompact S-arithmetic groups that was begun by Schwartz, Farb, Eskin, and Taback. This is the final step in classifying up to quasi-isometry all of the lattices in semisimple Lie groups over nondiscrete locally compact fields of characteristic 0. Specifically, we show:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-isometric Rigidity of Higher Rank S-arithmetic Lattices

We show that S-arithmetic lattices in semisimple Lie groups with no rank one factors are quasi-isometrically rigid.

متن کامل

Quasi - Isometric Rigidity for Psl

1. Introduction. Combining the work of many people yields a complete quasi-isometry classification of irreducible lattices in semisimple Lie groups (see [F] for an overview of these results). One of the first general results in this classification is the complete description, up to quasi-isometry, of all nonuniform lattices in semisimple Lie groups of rank 1, proved by R. Schwartz [S1]. He show...

متن کامل

First Cohomology, Rigidity and Deformations of Isometric Group Actions

In 1964, Weil gave a criterion for local rigidity of a homomorphism from a finitely generated group Γ to a finite dimensional Lie group G in terms of cohomology of Γ with coefficients in the Lie algebra of G. This note announces a generalization of Weil’s result to a class of homomorphisms into certain infinite dimensional Lie groups, namely diffeomorphism groups of compact manifolds. This give...

متن کامل

Quasi-isometric rigidity in low dimensional topology

The early work of Mostow, Margulis and Prasad on rigidity of arithmetic lattices has evolved into a broad use of quasi-isometry techniques in group theory and low dimensional topology. The word metric on a finitely generated group makes it into a metric space which is uniquely determined up to the geometric relation called quasi-isometry, despite the fact that the metric depends on the choice o...

متن کامل

Quasi-isometries of rank one S-arithmetic lattices

We complete the quasi-isometric classification of irreducible lattices in semisimple Lie groups over nondiscrete locally compact fields of characteristic zero by showing that any quasi-isometry of a rank one S-arithmetic lattice in a semisimple Lie group over nondiscrete locally compact fields of characteristic zero is a finite distance in the sup-norm from a commensurator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005